// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa // An optional pass for sanity-checking invariants of the SSA representation. // Currently it checks CFG invariants but little at the instruction level. import ( "fmt" "io" "os" "strings" "golang.org/x/tools/go/types" ) type sanity struct { reporter io.Writer fn *Function block *BasicBlock instrs map[Instruction]struct{} insane bool } // sanityCheck performs integrity checking of the SSA representation // of the function fn and returns true if it was valid. Diagnostics // are written to reporter if non-nil, os.Stderr otherwise. Some // diagnostics are only warnings and do not imply a negative result. // // Sanity-checking is intended to facilitate the debugging of code // transformation passes. // func sanityCheck(fn *Function, reporter io.Writer) bool { if reporter == nil { reporter = os.Stderr } return (&sanity{reporter: reporter}).checkFunction(fn) } // mustSanityCheck is like sanityCheck but panics instead of returning // a negative result. // func mustSanityCheck(fn *Function, reporter io.Writer) { if !sanityCheck(fn, reporter) { fn.WriteTo(os.Stderr) panic("SanityCheck failed") } } func (s *sanity) diagnostic(prefix, format string, args ...interface{}) { fmt.Fprintf(s.reporter, "%s: function %s", prefix, s.fn) if s.block != nil { fmt.Fprintf(s.reporter, ", block %s", s.block) } io.WriteString(s.reporter, ": ") fmt.Fprintf(s.reporter, format, args...) io.WriteString(s.reporter, "\n") } func (s *sanity) errorf(format string, args ...interface{}) { s.insane = true s.diagnostic("Error", format, args...) } func (s *sanity) warnf(format string, args ...interface{}) { s.diagnostic("Warning", format, args...) } // findDuplicate returns an arbitrary basic block that appeared more // than once in blocks, or nil if all were unique. func findDuplicate(blocks []*BasicBlock) *BasicBlock { if len(blocks) < 2 { return nil } if blocks[0] == blocks[1] { return blocks[0] } // Slow path: m := make(map[*BasicBlock]bool) for _, b := range blocks { if m[b] { return b } m[b] = true } return nil } func (s *sanity) checkInstr(idx int, instr Instruction) { switch instr := instr.(type) { case *If, *Jump, *Return, *Panic: s.errorf("control flow instruction not at end of block") case *Phi: if idx == 0 { // It suffices to apply this check to just the first phi node. if dup := findDuplicate(s.block.Preds); dup != nil { s.errorf("phi node in block with duplicate predecessor %s", dup) } } else { prev := s.block.Instrs[idx-1] if _, ok := prev.(*Phi); !ok { s.errorf("Phi instruction follows a non-Phi: %T", prev) } } if ne, np := len(instr.Edges), len(s.block.Preds); ne != np { s.errorf("phi node has %d edges but %d predecessors", ne, np) } else { for i, e := range instr.Edges { if e == nil { s.errorf("phi node '%s' has no value for edge #%d from %s", instr.Comment, i, s.block.Preds[i]) } } } case *Alloc: if !instr.Heap { found := false for _, l := range s.fn.Locals { if l == instr { found = true break } } if !found { s.errorf("local alloc %s = %s does not appear in Function.Locals", instr.Name(), instr) } } case *BinOp: case *Call: case *ChangeInterface: case *ChangeType: case *Convert: if _, ok := instr.X.Type().Underlying().(*types.Basic); !ok { if _, ok := instr.Type().Underlying().(*types.Basic); !ok { s.errorf("convert %s -> %s: at least one type must be basic", instr.X.Type(), instr.Type()) } } case *Defer: case *Extract: case *Field: case *FieldAddr: case *Go: case *Index: case *IndexAddr: case *Lookup: case *MakeChan: case *MakeClosure: numFree := len(instr.Fn.(*Function).FreeVars) numBind := len(instr.Bindings) if numFree != numBind { s.errorf("MakeClosure has %d Bindings for function %s with %d free vars", numBind, instr.Fn, numFree) } if recv := instr.Type().(*types.Signature).Recv(); recv != nil { s.errorf("MakeClosure's type includes receiver %s", recv.Type()) } case *MakeInterface: case *MakeMap: case *MakeSlice: case *MapUpdate: case *Next: case *Range: case *RunDefers: case *Select: case *Send: case *Slice: case *Store: case *TypeAssert: case *UnOp: case *DebugRef: // TODO(adonovan): implement checks. default: panic(fmt.Sprintf("Unknown instruction type: %T", instr)) } if call, ok := instr.(CallInstruction); ok { if call.Common().Signature() == nil { s.errorf("nil signature: %s", call) } } // Check that value-defining instructions have valid types // and a valid referrer list. if v, ok := instr.(Value); ok { t := v.Type() if t == nil { s.errorf("no type: %s = %s", v.Name(), v) } else if t == tRangeIter { // not a proper type; ignore. } else if b, ok := t.Underlying().(*types.Basic); ok && b.Info()&types.IsUntyped != 0 { s.errorf("instruction has 'untyped' result: %s = %s : %s", v.Name(), v, t) } s.checkReferrerList(v) } // Untyped constants are legal as instruction Operands(), // for example: // _ = "foo"[0] // or: // if wordsize==64 {...} // All other non-Instruction Values can be found via their // enclosing Function or Package. } func (s *sanity) checkFinalInstr(idx int, instr Instruction) { switch instr := instr.(type) { case *If: if nsuccs := len(s.block.Succs); nsuccs != 2 { s.errorf("If-terminated block has %d successors; expected 2", nsuccs) return } if s.block.Succs[0] == s.block.Succs[1] { s.errorf("If-instruction has same True, False target blocks: %s", s.block.Succs[0]) return } case *Jump: if nsuccs := len(s.block.Succs); nsuccs != 1 { s.errorf("Jump-terminated block has %d successors; expected 1", nsuccs) return } case *Return: if nsuccs := len(s.block.Succs); nsuccs != 0 { s.errorf("Return-terminated block has %d successors; expected none", nsuccs) return } if na, nf := len(instr.Results), s.fn.Signature.Results().Len(); nf != na { s.errorf("%d-ary return in %d-ary function", na, nf) } case *Panic: if nsuccs := len(s.block.Succs); nsuccs != 0 { s.errorf("Panic-terminated block has %d successors; expected none", nsuccs) return } default: s.errorf("non-control flow instruction at end of block") } } func (s *sanity) checkBlock(b *BasicBlock, index int) { s.block = b if b.Index != index { s.errorf("block has incorrect Index %d", b.Index) } if b.parent != s.fn { s.errorf("block has incorrect parent %s", b.parent) } // Check all blocks are reachable. // (The entry block is always implicitly reachable, // as is the Recover block, if any.) if (index > 0 && b != b.parent.Recover) && len(b.Preds) == 0 { s.warnf("unreachable block") if b.Instrs == nil { // Since this block is about to be pruned, // tolerating transient problems in it // simplifies other optimizations. return } } // Check predecessor and successor relations are dual, // and that all blocks in CFG belong to same function. for _, a := range b.Preds { found := false for _, bb := range a.Succs { if bb == b { found = true break } } if !found { s.errorf("expected successor edge in predecessor %s; found only: %s", a, a.Succs) } if a.parent != s.fn { s.errorf("predecessor %s belongs to different function %s", a, a.parent) } } for _, c := range b.Succs { found := false for _, bb := range c.Preds { if bb == b { found = true break } } if !found { s.errorf("expected predecessor edge in successor %s; found only: %s", c, c.Preds) } if c.parent != s.fn { s.errorf("successor %s belongs to different function %s", c, c.parent) } } // Check each instruction is sane. n := len(b.Instrs) if n == 0 { s.errorf("basic block contains no instructions") } var rands [10]*Value // reuse storage for j, instr := range b.Instrs { if instr == nil { s.errorf("nil instruction at index %d", j) continue } if b2 := instr.Block(); b2 == nil { s.errorf("nil Block() for instruction at index %d", j) continue } else if b2 != b { s.errorf("wrong Block() (%s) for instruction at index %d ", b2, j) continue } if j < n-1 { s.checkInstr(j, instr) } else { s.checkFinalInstr(j, instr) } // Check Instruction.Operands. operands: for i, op := range instr.Operands(rands[:0]) { if op == nil { s.errorf("nil operand pointer %d of %s", i, instr) continue } val := *op if val == nil { continue // a nil operand is ok } // Check that "untyped" types only appear on constant operands. if _, ok := (*op).(*Const); !ok { if basic, ok := (*op).Type().(*types.Basic); ok { if basic.Info()&types.IsUntyped != 0 { s.errorf("operand #%d of %s is untyped: %s", i, instr, basic) } } } // Check that Operands that are also Instructions belong to same function. // TODO(adonovan): also check their block dominates block b. if val, ok := val.(Instruction); ok { if val.Parent() != s.fn { s.errorf("operand %d of %s is an instruction (%s) from function %s", i, instr, val, val.Parent()) } } // Check that each function-local operand of // instr refers back to instr. (NB: quadratic) switch val := val.(type) { case *Const, *Global, *Builtin: continue // not local case *Function: if val.parent == nil { continue // only anon functions are local } } // TODO(adonovan): check val.Parent() != nil <=> val.Referrers() is defined. if refs := val.Referrers(); refs != nil { for _, ref := range *refs { if ref == instr { continue operands } } s.errorf("operand %d of %s (%s) does not refer to us", i, instr, val) } else { s.errorf("operand %d of %s (%s) has no referrers", i, instr, val) } } } } func (s *sanity) checkReferrerList(v Value) { refs := v.Referrers() if refs == nil { s.errorf("%s has missing referrer list", v.Name()) return } for i, ref := range *refs { if _, ok := s.instrs[ref]; !ok { s.errorf("%s.Referrers()[%d] = %s is not an instruction belonging to this function", v.Name(), i, ref) } } } func (s *sanity) checkFunction(fn *Function) bool { // TODO(adonovan): check Function invariants: // - check params match signature // - check transient fields are nil // - warn if any fn.Locals do not appear among block instructions. s.fn = fn if fn.Prog == nil { s.errorf("nil Prog") } fn.String() // must not crash fn.RelString(fn.pkgobj()) // must not crash // All functions have a package, except delegates (which are // shared across packages, or duplicated as weak symbols in a // separate-compilation model), and error.Error. if fn.Pkg == nil { if strings.HasPrefix(fn.Synthetic, "wrapper ") || strings.HasPrefix(fn.Synthetic, "bound ") || strings.HasPrefix(fn.Synthetic, "thunk ") || strings.HasSuffix(fn.name, "Error") { // ok } else { s.errorf("nil Pkg") } } if src, syn := fn.Synthetic == "", fn.Syntax() != nil; src != syn { s.errorf("got fromSource=%t, hasSyntax=%t; want same values", src, syn) } for i, l := range fn.Locals { if l.Parent() != fn { s.errorf("Local %s at index %d has wrong parent", l.Name(), i) } if l.Heap { s.errorf("Local %s at index %d has Heap flag set", l.Name(), i) } } // Build the set of valid referrers. s.instrs = make(map[Instruction]struct{}) for _, b := range fn.Blocks { for _, instr := range b.Instrs { s.instrs[instr] = struct{}{} } } for i, p := range fn.Params { if p.Parent() != fn { s.errorf("Param %s at index %d has wrong parent", p.Name(), i) } s.checkReferrerList(p) } for i, fv := range fn.FreeVars { if fv.Parent() != fn { s.errorf("FreeVar %s at index %d has wrong parent", fv.Name(), i) } s.checkReferrerList(fv) } if fn.Blocks != nil && len(fn.Blocks) == 0 { // Function _had_ blocks (so it's not external) but // they were "optimized" away, even the entry block. s.errorf("Blocks slice is non-nil but empty") } for i, b := range fn.Blocks { if b == nil { s.warnf("nil *BasicBlock at f.Blocks[%d]", i) continue } s.checkBlock(b, i) } if fn.Recover != nil && fn.Blocks[fn.Recover.Index] != fn.Recover { s.errorf("Recover block is not in Blocks slice") } s.block = nil for i, anon := range fn.AnonFuncs { if anon.Parent() != fn { s.errorf("AnonFuncs[%d]=%s but %s.Parent()=%s", i, anon, anon, anon.Parent()) } } s.fn = nil return !s.insane } // sanityCheckPackage checks invariants of packages upon creation. // It does not require that the package is built. // Unlike sanityCheck (for functions), it just panics at the first error. func sanityCheckPackage(pkg *Package) { if pkg.Object == nil { panic(fmt.Sprintf("Package %s has no Object", pkg)) } pkg.String() // must not crash for name, mem := range pkg.Members { if name != mem.Name() { panic(fmt.Sprintf("%s: %T.Name() = %s, want %s", pkg.Object.Path(), mem, mem.Name(), name)) } obj := mem.Object() if obj == nil { // This check is sound because fields // {Global,Function}.object have type // types.Object. (If they were declared as // *types.{Var,Func}, we'd have a non-empty // interface containing a nil pointer.) continue // not all members have typechecker objects } if obj.Name() != name { if obj.Name() == "init" && strings.HasPrefix(mem.Name(), "init#") { // Ok. The name of a declared init function varies between // its types.Func ("init") and its ssa.Function ("init#%d"). } else { panic(fmt.Sprintf("%s: %T.Object().Name() = %s, want %s", pkg.Object.Path(), mem, obj.Name(), name)) } } if obj.Pos() != mem.Pos() { panic(fmt.Sprintf("%s Pos=%d obj.Pos=%d", mem, mem.Pos(), obj.Pos())) } } }